™~ Niga

&

CANSAT

CanSat Raspberry Pi Pico Workbook

Table of content

T g o [UTot i o] o WU PP P PP PP PPPPP PR PPPPN 3
THE CANSAL Kit.. .o 4
LT B = TS o o =T 1 Y T T o USSP 9
Connect your Raspberry Pi PicO t0 yOUr COMPULETcuviiiieieeeiiieiiiiee e 11
Install ThoNNY 0N YOUI COMPULETviiiiiiiiiiiiieiieiee ettt e e 12
Install MicroOPYthon 0N YOUT PICOuiii i e e e e eaaens 14
Run your first MicroPython code 0N YOUN PICO..........ccuviviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 16
General Purpose Input/Output (GPIO)........ooeiiiiiiee e 17
Write your first microPython file to control the onboard LED..............ccooooeiiiiiii, 18
Software development & WIFNG TESTuuuii i e e e ae s 21
Meet & DreadbOArduu e 21
Blink a LED on the breadbOard..............coooiiiiiiii e 22
=TS oLV T T g 01T = PURPPPRPP 23
Measuring temperature and PrESSUIEuuuuuuuuueuieiiniiiiieiiiaeeaieeaabeebeebbeeeeeeneneenanenneeeennee 24
Install the BMP280 python lIDrary........ccooeeeeiiieiiiiee et 24
Soldering the COMPONENES PINSuuuiuiiiiiiiiiiiiitiiiiiiieiie bbb nereeneneneeene 27
Connecting the BMP280 Pressure/Temperature Sensor using I12C............cccccceeeeeenen. 28
Reading the Temperature and PreSSUIEccuviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 30
ReCEIVING radio ata..........couuiuiiii i e e e e et e e e e e e e ar s 31
Install the REMG9HCW python library ... 31
Connecting the RFMBIHCW USING SPL......ovuiiiiiiccc e 32
Waiting fOr radio data..........cccoeeiiiiiiiicc e 34
Sending radio GALAccoviiiiiiiiii 35
ASSEMDIING YOUF CANSAL......cciiiiiiiiiie e e e e e e et e e s e e e e e e e aas b e e e eaaeaeenees 37
WRAL L0 O NEXE....c e 37
(€T)T T 01 01T PSR 37
Fa] 0[S T PP PTRPP 38
Learning PYENON ... et 38

[O {0 (oo | IR PRSRRPUPPR 38
Serial Peripheral INnterface (SPI) e 39

Universal Asynchronous Receiver-Transmitter (UART)oioiiiiiii i 40

CANSAT

™~ Niga

&

CANSAT

Introduction

The following labs have been designed to introduce you to some of the electronics and
programming skills required to undertake the CanSat primary mission.

This document is to the point without being a complete technical guide.
References to full technical guides are given where necessary.

The difficulty of the labs is progressive, starting with wiring and programming steps without
any soldering.

If you have never coded in Python, we advise you to look at the Learning Python section

The CanSat Kit

The kit comprises of off-the-shelf hardware that is cheap and easy to buy online. This allows
teams to easily replace broken components and to also find support and ideas from the
wealth of online teaching tutorials and technical resources related to Raspberry Pi Pico and
MicroPython. The kit we use in the labs contains the following items:

2x Raspberry Pi Pico with headers

The Pico is sold with or without headers pre-soldered.
We give you 2 Pico with headers to help you get up to
speed and focus early on programming.

https://www.adafruit.com/product/5525

2x radio transceivers REM69HCW

https://www.adafruit.com/product/3071

1x BMP280 Pressure/Temperature Sensor

https://www.adafruit.com/product/2651

https://www.adafruit.com/product/5525
https://www.adafruit.com/product/4883
https://www.adafruit.com/product/5525
https://www.adafruit.com/product/3071
https://www.adafruit.com/product/2651

1x TMP36 sensor

Alternative to the BMP280, the TMP36 is a basic analogue temperature sensor that outputs
a voltage based on the ambient temperature around the sensor.

https://learn.adafruit.com/tmp36-temperature-sensor

1x breadboard for prototyping circuits

+u--- TR - . LN - s =B +
] EEEES EEREES EESER 5 & E NGB EEEEs
SBEBRNIYIRXRBRIRB osIaoascnds 00N ol win =
OW W S S 5 % %" 5 5B W 8NGOS @98 @ csesneeC
g m @ @ % 8 % 8 8 M ¥ 8 W U M W W EWESSSs s "
O} @ 8 8 8 8 8 8 8 M M M 8 W W 8 e ueenwessesesns”
Cwmm o ®esemeoemeeeweeeeeesesseesssess
P9 @ W % @ WS EE®SESESESESESNRSESESNSES """ neeee?

. s
THE WM WM EEEEEEESENE NSNS SN SN EEEEEEEE
CggeesEEENEEEE NS EESE eSO S eSS nnn®
e MW e EEEEEEEEEEEEEENEEEEEEEERER
TE M EEEEEEEEEEEEEEEEEEEEEER RN
T W MW EEEESEEEEEEEEEEENN NN RS
SSBNIRRVRNNEBEx3A50rnIc0® N0 &N
+lll.l L LR] " EEEB lllll"

-—
L]
L
L
"

A breadboard is a construction base used to build semi-permanent prototypes of electronic
circuits without any soldering.

1x USB cable

Cable used to plug your Raspberry Pico to a computer to program it or to charge the Lipo
lithium battery.

https://learn.adafruit.com/tmp36-temperature-sensor

~ by

CANSAT

1x lithium battery

3.7V 1300mAh battery to power the Raspberry Pico inside your CanSat, without the USB
cable.

https://cdn-shop.adafruit.com/datasheets/Li-poly+603562-1300mAh.pdf

1x 5 volts converter and lithium battery charger

(.! !OO......!‘J.

R &= Saadie Bl
l‘ B ® . B0 5V

Board that converts the lithium battery power to a 5 volts power source suitable for the
Raspberry Pico. It can recharge the lithium battery when the kit is powered via USB.

https://www.adafruit.com/product/1944

https://cdn-shop.adafruit.com/datasheets/Li-poly+603562-1300mAh.pdf
https://www.adafruit.com/product/1944

1x Cansat base board for Pico

e
o

:l'- 3505

00
0 0 05 o)m
000 0jopw
000040
0000030

After having tested the wiring of your components and their related software on the
breadboard, you can solder the Raspberry Pico, the 5V converter board and the radio
transmitter to this board. Its diameter fits within the maximal CanSat diameter. The BMP280
board can be plugged in using the provided JST cable.

https://shop.mchobby.be/fr/pico-rp2040/2275-carte-de-base-cansat-pour-pico-
3232100022751.html

1x Cansat extension board

10
7 .‘

U1}
Qi

This CanSat extension board is useful to add components needed for the secondary mission
like a GPS or other sensors.

https://shop.mchobby.be/fr/pico-rp2040/2272-carte-de-prototypage-cansat-pour-pico-
3232100022720.html

https://shop.mchobby.be/fr/pico-rp2040/2275-carte-de-base-cansat-pour-pico-3232100022751.html
https://shop.mchobby.be/fr/pico-rp2040/2275-carte-de-base-cansat-pour-pico-3232100022751.html
https://shop.mchobby.be/fr/pico-rp2040/2272-carte-de-prototypage-cansat-pour-pico-3232100022720.html
https://shop.mchobby.be/fr/pico-rp2040/2272-carte-de-prototypage-cansat-pour-pico-3232100022720.html

~
CANSAT

1x FPC ribbon

This ribbon is used to connect the base board to the extension board.

-p0os-p05-1016mm-

https://shop.mchobby.be/en/wire-cables/2278-fpc-ribbon-40

3232100022782.html

CEE R R R R A R A
:.-llltvclflt.(t
TTEEAEEEEE R R R R L L L J
LA R R AR AR R A A A A A A L2

A A AR A LA R R R R R R N,

A AL L L L L L LR X X
A AL AL L AL R L X X
AL AL R R R T TN)

..,.ae..:rcco:(llt'll‘

ESERO provides you with a complete kit for free but the various components can be bought

separately at McHobby

https://shop.mchobby.be/en/wire-cables/2278-fpc-ribbon-40-pos-p05-1016mm-3232100022782.html
https://shop.mchobby.be/en/wire-cables/2278-fpc-ribbon-40-pos-p05-1016mm-3232100022782.html
https://shop.mchobby.be/fr/pico-rp2040/2271-kit-cansat-avec-raspberry-pi-pico-micropython-3232100022713.html

Meet Raspberry Pi Pico

A Raspberry Pi Pico is a low-cost microcontroller device. Microcontrollers are tiny
computers, but they only have a small file storage (unlike a hard drive on a typical computer)
and lack peripheral devices that you can plug in (for example, keyboards or monitors).

A Raspberry Pi Pico has

1- A 133MHz processor with 264 kilobytes of RAM memory
2- 2 megabytes of file storage
3- A BOOTSEL button used to install MycroPython on the Pico

4- Agreen LED
5- A USB connector to power the Pico and transfer software or data.
6- 2 x 20 pins used to power the Pico as well as control and receive input from a variety of

electronic devices.

BOOTSEL
133MHz processor button
with 264Kb RAM 2 Mb file JEE
20 pins memory storage Green LED o

N \ \ \ \

Raspberry Pi Pico (©) 2020

Each of the 40 pins has its own function.

If you need to know the pin numbers for a Raspberry Pi Pico, you can refer to the following
diagram or this interactive website

S¢d9) a3l

| UARTO TX | 12C0SDAJ SPIORX_ | GRO. b
| UARTORX | 12C0SCL § SPI0 CSn | GR1_ ¥
[GND K]

[12C1SDA | sPiosck §GP2 Rt

[i2c1scL | spioTx J - GP3 Qi3

6

L) VBUS |

3 IS5

4 GND

37

36 [ENEICN

3

7 34 I
8 33
12C1SDA § sPiosck | GP6 B 2 I 12C1 SCL

12C1 SCL § SPIOTX 10
UART1 TX § 12c0spA | spiirx § cps BT

Eif - 6P26] ADCO J 12C1 SDA
30

| UARTT RX | 12c0scL § sPiicsn § 6P RiFI 29
| GND B i} GND |
14 i GP21 |
15 "3 GP20 |
16 FL) GP19 | SPIOTX | 12C1 SCL |
| uARTO RX | 12c0 scL § sPiicsn § GP13 R 78 GP18 | SPi0SCK § 12CT SDA |
| GND T PKl GND |
| 12C1SDA § sPi1ScCK § GP14 R 73 GP17 § SPioCsn § 12C0 SCL_§ UARTORX
20 A8 GP16 | SPIORX] 12C0 SDA J UARTOTX |
= 5]
M rower [cround [UART/UART (defauty [l crPio,pio,andPwnv [l aoc [s M 12c B Debugging

While working with the Pico, you will only need to work with:
1- Red and black pins = pins related to power and ground connection
2- Purple pins = pins related to the UART communication
3- Rose pins = pins related to the SPI communication protocol
4- Blue pins = pins related to the 12C communication protocol

There are several ways to power your Pico, either using
1- the micro-USB cable (in the development phase)
2- the provided 5 volts converter and lithium battery (when development is done)

https://pico.pinout.xyz/
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

~ by

CANSAT

Connect your Raspberry Pi Pico to your computer

In this section, you will connect a Raspberry Pi Pico to another computer and learn how to
program it using MicroPython.

Firmly plug your Raspberry Pi Pico on the provided breadboard like shown in the following
picture. Place it so that it is separated by the breadboard’s ravine in the middle.

/ N
| |
SESESES SESES SESEEE SEEEES SEEEES

+IIIII EEEEDN EeEBEN aEEEEnN IIIII+

SE NS EE NSNS NSNS EE NN
S SN EEEEEEENEENEENEEEEEEERENES
Pl ldldlcdle'dlodla'c o LI NN NN
© L
....... EERERERRRER

O ¢

O ¢

(O ¢
--------- TR RERRERRER
 Jasnusnnnns
R js s s s s s s s
SESESEESSEESNESESEEEEESEESREEES
SN EEESEESEEEESENEEESEEERENES

Your Pico should appear like an USB storage on your file system

» w RPI-RPZ (D)

~ .

CANSAT

Install Thonny on your computer

Python is a general purpose language used in a large variety of applications (data sciences,
Artificial Intelligence, statistics, ...) while MicroPython is specifically designed for
microcontrollers like the Raspberry Pi Pico used in our project.

To edit, run and debug our code in MicroPython language we will install an Integrated
Development Environment (IDE) called Thonny, available at https://thonny.org

Open Thonny from your application launcher. It should look something like this:

T
File Edit View Run Tools Help
1EEHd O o ™ |
<untitled >
|
|

Shell ‘

Local Python 3 « Thonny's Python

At some point we will need Thonny to be opened twice.
e Go to the menu “Tools -> Options...->General’
¢ Uncheck the checkbox “Allow only single Thonny instance”
o Press “OK”

https://thonny.org/

~ .

You can use Thonny to write standard Python code. Type the following in the top window,
and then click the Run button.

print('Hello World!")

The result is shown in the “Shell” window

T Thonny - <untitled= @ 1:22 — O 4

File Edit View Run Tools Help

0EH %#@ @ ™
|Run current script {F5)|

<untitled> *

print('Hello World!")

Shell

>y
Hello World!

>>>

Local Python 3 « Thonny's Python

~ .

CANSAT

Install MicroPython on your Pico

Your new Raspberry Pi Pico needs MicroPython to run your software.

MicroPython is a programming language largely compatible with Python that is optimized to
run on a microcontroller like the Raspberry Pico.
Its documentation can be found on the MicroPython official website.

Start by unplugging the micro-USB cable from your computer but leave it connected to your
Pico.

Press the BOOTSEL button and hold it while you connect the other end of the micro-USB
cable to your computer.

In the bottom right-hand corner of the Thonny window, you will see the version of Python
that you are currently using.

Local Python 3 « Thonny's Python

Left-click on the Python version and choose ‘Install MicroPython...’

T Thonny - <untitled> @ 1:1 — O ¥

File Edit View Run Tools Help

JEd O @ ™

<untitled> *

Shell v Local Python 3 + Thonny's Python

> Install MicroPython.. @ 2

Install CircuitPython...

Configure interpreter...

Local Python 3dh0nny'5 Python |

https://docs.micropython.org/en/latest/

A dialog box will pop up to install the MicroPython firmware on your Pico.
Select the correct MicroPython variant and click on the Install button.

T Install MicroPython 4

Target volume |RPI-RP2 (D3 v
family RP2

MicroPython variant |RE|5pt:-v.'3rrjg.r Pi « Pico / PicoH e ~ |

version |1.19.1 v |

info https://micropython.org/download/rp2-pico

| Installd‘ Cancel |

Wait for the installation to complete and click on the Close button.

You don’t need to update the firmware every time you use your Pico.

Next time, you can just plug it into your computer without pressing the BOOTSEL button.

~ -

CANSAT

Run your first MicroPython code on your Pico

Make sure that your Raspberry Pi Pico is still connected to your computer.
Select the MicroPython (Raspberry Pi Pico) interpreter on the bottom right.

T Thonny - <untitled= @ 1:1 — O >
File Edit View Run Tools Help

J=EZEd O#% @ ™

<untitled> *

Shell

¥ Local Python 3 « Thonny's Python

> MicroPython (Raspberry Pi Pico) - CC 2
pul

Configure interpreter...

Local Python oThonny's Python |

Look at the Shell panel at the bottom of the Thonny editor.

You should see something like this:

Shell

3>

Thonny is now able to communicate with your Pico using the REPL (read—eval—print loop),
which allows you to type Python code into the Shell and directly see the result.

MicroPython adds hardware-specific modules, such as [Eteials, that you can use to
program your Raspberry Pi Pico.

Let’s create a object to play with the onboard LED, which can be accessed
using GPIO pin 25.

If you set the value of the LED toil, the onboard LED turns on.

Enter the following code, make sure you tap Enter after each line.

from machine import Pin
led = Pin(25, Pin.OUT)

led.value(1)

~ by

CANSAT
T Thonny - <untitled= @ 3:13
File Edit View Run Tools Help
A= H @ =
<untitled: *

1 from machine import Pin
2 led = Pin(25, Pin.0OUT)

3 led.value(1)| o

After pressing the green “Run” button o , you should see the onboard LED light up.

Kl ‘;“.

b : e ¢ & &
'.\, ~§
BOOTSEL ..“-’

-

Change the code and set the LED value to[§] to turn the LED off.

led.value(9)

Turn the LED on and off as many times as you like.
Tip: You can use the up arrow on the keyboard to quickly access previous lines.

We said the onboard LEP is connected to GPIO pin 25, but what is GPIO?

General Purpose Input/Qutput (GPIO)

GPIO pins on the Raspberry Pi allow external voltages to be read from the software and they
also allow external voltages to be set from software. GPIOs can be either digital or analog.
Analog pins can be set as a digital pin but digital pins remain digital. Analog pins are only
input pins.

For our 3.3V Raspberry Pi, any voltage under 2.5V is interpreted as "False" and conversely
any voltage over 2.5V is interpreted as true (up to 3.3V). This is similar for output signals. A
"True" output will set the pin's voltage to 3.3V and the "False" output will set the pin's voltage
to OV.

GPIO pins can be used as either input or output ports and this set by software.

The Pi Pico has 28 GPIO ports as seen in the green boxes in the following diagram. Many
pins are multi-purpose and can also be used for other interfaces (UART, SPI, 12C), these are
represented by the multi-coloured boxes to the side of the green boxes in the diagram. The
following link contains the pinout: https://datasheets.raspberrypi.org/pico/Pico-R3-A4-

Pinout.pdf

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf

[UARTO Tx | 1200 5DA | spioRx_ | GPo— [ETlb'e [T« BTSN
[UARTO RX | 12C0SCL | SPioCn | GP1- IElibe : Y 5 INSE
GND RERES o'y oo |
[121 5DA | sPiosck | GP2 RiEp e (X 37
I T T 5 O oy 5v3(0uD) |
[UARTITX] 120 s0A | spiorx_ | GPa— Rilbe o &Y
[UARTIRX] 12c0 ScL | spiocsn | Gps— [Eilbe - o &1 GP2s
GND JENEe - ol cono | Acnp |
[12¢150A | sPiosck | GPo" EIb® - o XTGP | Aoct] reciscl |
NECTE IS M o S X 5 =
[UARTI TX | 12C0SDA | sPiiRX | GPa Rile < - o
FOART RX] 2cosct Jorcon b cre e © o S
(oo Rilbe S sl G0 |
[12c150A | spiisck | GP10- ETEpe & . X 27 12C0 SCL
GRil RCRe O o @1 GP20 12C0 SDA
[UARTOTX § 12C0 SDA | sPi1Rx _|_GP12 _Rjp'e - o) GPI9] sPio Tx | 1261 SCL |
[UARTORX § 12C0SCL | sPiicsn | GP13 Rilp'e = o 78 GP18 | spio sck | 12C1 SDA |
[“cno Rllbe 2 = 2 IS
L. = o g7 GP17_ | spioCsn | 12c0SCL J UARTORX]
I T T o PR J Q@ .- oo [omon

[2]
r4
o 2

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf

Typical GPIO CanSat Uses:

Inputs: On/Off based sensors, switches, buttons, deployment sensors

Outputs: Status LEDs, basic servos (PWM is better), turning sensors on, resetting sensors
connected by other signals

If you want to write a longer program, then it is best to save it in a file. You will do this in the
next section.

Write your first microPython file to control the onboard LED

The Shell is useful to try out quick commands. However, it is better to put longer programs in
a file.

Thonny can save and run MicroPython programs directly on your Raspberry Pi Pico.

In this step, you will create a MicroPython program to blink the onboard LED on and off in a
loop, using GPIO pins

Go back to Thonny and click in the main editor pane of.

Enter the following code to toggle the LED.

import necessary pre-existing libraries
from machine import Pin
Declare a variable named “led”, link it to pin number 25 and define it as output

led = Pin(25, Pin.OUT)
Change the led state from led.value(®) to led.value(1l) and vice versa
led.toggle()

CANSAT
The complete “Pin” library documentation can be found in the official MicroPython
documentation
Click the Save button to save your code and the following screen will show up:

T

This computer

Raspberry Pi Pico

Choose “Raspberry Pi Pico” and name the file “blink.py”

Tip: You need to enter the .py file extension so that Thonny recognises the file as a Python
file. Thonny can save your program to your Raspberry Pi Pico and run it.

You should see the onboard LED switch between on and off each time you click the Run
button.

But what if you want to see the LED blinking without having to click the Run button over and
over ?

To achieve this we will use a “while” loop and the “sleep” function

Be careful to indent the code with 4 spaces within the while loop to let MicroPython know
that these lines are part of the while loop.

Update your code so it looks like this:

import necessary pre-existing libraries

from machine import Pin

from time import sleep

Declare a variable named “led”, link it to pin number 25 and define it as output
led = Pin(25, Pin.OUT)

Be careful to indent the code with 4 spaces within the while loop to let
MicroPython know which lines are part of the while loop.
while True:
Change the led state from led.value(@) to led.value(l) and vice versa
led.toggle()
Halt the program execution for half a second
sleep(0.5)

You can also use the Timer module (first line below) to set a timer that runs a function at
regular intervals. Update your code so it looks like this:

https://docs.micropython.org/en/latest/library/machine.Pin.html
https://docs.micropython.org/en/latest/library/machine.Pin.html
https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.micropython.org/en/latest/library/time.html#time.sleep

import necessary pre-existing libraries
from machine import Pin, Timer

Declare a variable named “led”, link it to pin number 25 and define it as output
led = Pin(25, Pin.OUT)

Declare a timer variable to deal with timing of periods and events

timer = Timer()

Declare a function named “blink” that toggle the LED state

def blink(timer):
Change the led state from led.value(®) to led.value(1l) and vice versa
led.toggle()

Configure the timer to call the pre-defined blink function every 2.5 seconds
timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink)

The complete “Timer” library documentation can be found in the official MicroPython
documentation

Click Run and your program will blink the LED on and off until you click the Stop button.

Tip: If you unplug/re-plug your Pico, you will have to press again the Run button to run the
program. But if you name your program “main.py” on your Pico it will run automatically when
the Pico powers up.

https://docs.micropython.org/en/latest/library/machine.Timer.html?highlight=timer#machine.Timer
https://docs.micropython.org/en/latest/library/machine.Timer.html?highlight=timer#machine.Timer

Software development & wiring test

Meet a breadboard

Whilst you are learning the basics of Pico and sensors it is best to use a solderless
breadboard, as any mistakes you make building your circuit can be easily changed.
A breadboard is a simple tool that can be used to wire electrical components together.

§E, | SEEEE e e e
ie | i EEEET WG I
WE =E===% - s e
ii |« SEEET T I
- EEE=E - I
————— s
- C '-
o SEEET T s e
gi | | SEEEE = [y
e SEEET - I
iy | wEEEEE - s
pg | VEEEEE i e
rss=s== 4 = === !
i e i ot in e e
aa | wS=Es= NE = =
ji | C=as== Wi e
gi | nEEEEE =T e e
i | V== == a1 | o R —
EE==¢= 4 e B Ll
g | UEE S i e
1] o o o Ll il [
aa | 1S===% an = ==
55 === a5 e
ga | 'S=s=% T e
sss== s == === Ll
aa | SEEEEE 1 e e
i e EiE | s I |
aa | EEEEE a _— =
i e EIE | s I |
aa | ‘E=EEEE - e
EEEEF e
+ abcocde

L

Pins of electrical components can be placed into the terminals on the board. Centrally, rows
are horizontally connected. This means for example, that the two pins of a resistor should be
placed in different rows, otherwise it will form a closed circuit with itself.

It is very important to make a sketch of your circuit before connecting and powering the
circuit, because you will risk breaking the components. The outer columns of the board are
connected in columns, rather than rows. Typically, these are used to provide ground and
voltage connections.

Blink a LED on the breadboard

You will know learn how to control an external LED.

Use a 220 ohms resistor, an LED, some female jumpers and a few headers to connect up
your Raspberry Pi Pico on your breadboard as shown in the image below.

Note how the LED is connected on GPIO 15 on one side (the last one on the bottom left as
you can see in the Pico pinout diagram) and to the Pico’s ground pin on the other side.

SOND=ssssssssssssssssssssssassannnnnnnnnn

! EEEEn EEEER EEsEEs EEEEn EEEER EEEEn EEEEen EEEEN EEeEES aEEEeEn !
+IIIII aesEn L NN N asEeEen aeEEn aEeEEn aeeEen aesEn L N NN IIIII+

In Thonny, reuse the code from the previous section, but instead of GPIO 25, use GPIO 15

Declare a variable named “led”, link it to pin number 15 and define it as output

led = Pin(15, Pin.OUT)

https://wiki.mchobby.be/images/3/3d/FILS-BB-FFASSOR-v2.png
https://pico.pinout.xyz/

In this example, we chose to connect the LED to GPIO 15 but you can use another GPIO if
you want.

Test your jumpers

Your kit contains several male and female jumpers to test your components wirings on your
breadboard before soldering your components on the CanSat base board.

Sometimes, because of factory issues, it happens that some if these jumpers are broken.

To save you some headaches and time, we strongly advise you to test all your jumpers with
the previous “blink an external LED” exercise by replacing the 2 jumpers with the other
jumpers provided with the Kkit.

Alternatively you can also test the jumpers with the continuity tester of a multimeter device

https://en.wikipedia.org/wiki/Continuity_tester

Measuring temperature and pressure

The BMP280 chip provided with the kit measures the atmospheric pressure as well as the
temperature.

Install the BMP280 python library

Micro Python provides some built-in functionality for managing the Pi Pico; however this can
be extended through the use of third-party libraries. These are libraries produced by
manufacturers, suppliers, and the Micro Python community for the purpose of using extra
devices with the Pi Pico. These libraries reduce the complexity of using external devices by
providing high-level functions to interact with the devices they support

The kit is made of several sensors for which we will use specific Micro Python libraries we
can find on the internet.

To interact with the BMP280 we need a dedicated python library that can be downloaded via
this link:

https://raw.githubusercontent.com/mchobby/esp8266-upy/master/bme280-
bmp280/bme280.py

Right-click on the file, and choose “Save as...” as shown in the screenshot below:

LIl £0nr wsir e —
BMEZE@ OSAMPLE_E = 4
BMEZ8@_OSAMPLE_16

Back Alt+Left Arrow
BME28@ REGISTER_C Forward Alt+Right Arro
BMEZ2E® REGISTER_(C(-
Reload Ctrl+R
clas=s BME2E@: Sa'v'eas...o Ctrl+5
. o
def _ init (s Print... Ctrl+P
f Cast...

i) -
Search images with Google Lens

Check tl L0 Send to your devices

if mode me . !
[::j Create QR Code for this page T

raise
1 Translate to frangais
1 i
I Getimage descriptions from Google
self. mod:
?Elf.adr_:lr-: Wiew page source Ctrl+l
if i2c is
raize Inspect
self.izc T

Save the file on your PC and keep the name “bme280.py” in lowercase.

https://raw.githubusercontent.com/mchobby/esp8266-upy/master/bme280-bmp280/bme280.py
https://raw.githubusercontent.com/mchobby/esp8266-upy/master/bme280-bmp280/bme280.py

~ .

Using Thonny, the library must then be transferred from your PC to the Raspberry Pi Pico
/lib directory.

Ensure the Pico is connected to your PC and turned on.

In Thonny, ensure you are connected to the Pico by clicking on the bottom right menu

Lacal Python 3 » Thonny's Python

v MicroPython (Raspberry Pi Pico) - COM4

Configure interpreter...
MicroPython I[R?spl::lerr}r Pi Pico) = COM4
In the “View” menu, ensure the “Files” option is checked.

Then in the “Raspberry Pi Pico” window on the bottom right, right click and select “new
directory...”.

Raspberry Pi Pico
lﬁ rain.py

Open in Thonny
Open in default external app
Hide hidden files

Download to Chternp

[Neugirecion |

Delete

Properties

Enter “lib” (in_lowercase) and press ok

To Mew directory X

Enter name for new directory under

/
lib|

Then double-click on the “lib” directory which is empty for the moment

Raspberry Pi Pico =
I lib

~ -y

CANSAT
In the top left “Files” window, browse to the location where you saved the bme280.py file.

Right-click on the bme280.py file and press “upload to /lib” to install the library on the Pico.

Files bme2d0.py

This computer
C: Y temp
|| AQP info session.zip
| Avant Doel 3.png
& bme280.py _
|| Case Study for (Open in Thonny
|| CL_2022-06-04 Open in default external app
| CV Sandrine 200 Cenfigure .py files...
_logo.sy ide hidden files
_| ESA_logo.svg Hide hidden fil
|| ESERQ Luxemby -
] 155_event_pictu Upload to /lib *

_-l |S.S._e'n.rent_pictu Mew file...

N W N

CANSAT
Soldering the components pins

WARNING: Please first carefully read the guide to Excellent Soldering from Adafruit

The BMP280 as well as the RFM96W radio module for the ground station need header pins
soldered to them so that they can be connected to the breadboards.

The pins of the BMP280 board and the RFM96W radio module that will be used for the
ground station need to be soldered with header pins.

Bl‘1p280

Temp+Barometr1c
/
og:/@ux Pressure Sensor E

3 3- 5 5;‘/ | (o 260-12690 hPa
=== DefaLlt 12C Addr Ox77 ==
.,.‘ —q“m w c‘: fu‘c T
L (G@ad: r.,g

» “

For the second RFM96W radio module, solder female jumpers cables on its pins, not
headers, so that you can easily connect the module to the breadboard as well as on the
CanSat base board later on.

@ Insufficient J ooh Too
Wetting -

Much
Solder
Cold Joint w/ _ L) Solder
Insufficient

Insufficient
: Wetting
Wetting ¢
(Pad) B ° °

https://learn.adafruit.com/adafruit-guide-excellent-soldering/common-problems

https://learn.adafruit.com/adafruit-guide-excellent-soldering/

Connecting the BMP280 Pressure/Temperature Sensor using 12C

Before we can read data from the sensor, we need to connect it to the Pi.
To do that, we first need to solder headers to its pin as explained on page 8 of the BMP280
documentation.

The documentation explains we need a 3.3V power supply to power it. We can use the Pico
3Vv3 and GND (ground) pins for that. The documentation also explains that we can connect
to it using the 12C bus. 12C requires us to connect two data cables and, thus we need to
connect four cables in total.

1. Using the interactive pinout website, locate the 3V3 power pin on the Pico

2. Still using the interactive pinout website, locate 12C (0) pins on the Pico (see below)

oo R o -
—s o . S ‘
I2C0 SDA . . 30“

Ground L] L] 28
‘ ‘
‘ ‘
‘ ‘ m

Ground [REINES . 23
‘ ‘
. =1

3. Connect the 2-6V input pin on the BMP280 to the pin 3V3 on the Pi (3.3 volts 300 mA
output)

4. Connect the GND pin on the BMP280 to a GND pin on the Pi.
5. Connect the 12C 0 SDA (pin 11) to the BMP280 SDI pin.

6. Connect the 12C 0 SCL (pin 11) to the BMP280 SCK pin.

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-bmp280-barometric-pressure-plus-temperature-sensor-breakout.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-bmp280-barometric-pressure-plus-temperature-sensor-breakout.pdf
https://pico.pinout.xyz/
https://pico.pinout.xyz/
https://pico.pinout.xyz/

CANSAT
See the connection diagram below:

%rigg’ggeensor.

[C HOBBY

shop.mchobby.be

Reading the Temperature and Pressure

Now that the BMP280 is connected and set up we can read data from it.

1. Create a new file

File Edit View Run Tools Help
B New Ctri+N |

2. Save this file under the name you want, terminated by .py

3. Fill the file with the following code

from machine import I2C
The BME286 Library also work for the BMP280 sensor
from bme280 import BME280, BMP280_I2CADDR
from time import sleep
Initiate a new I2C connector on bus 0, sda=GP8, scl=GP9 @ 400 KHz
(default)
i2c¢ = I2C(0)
Create a new BME280 variable connected to i2c bus 0 communicating with
address BMP280 IZ2CADDR
bmp = BME280(i2c=i2c, address=BMP280_I2CADDR)
while True:
print a tuple with (temperature, pressure and humidity)
print(bmp.raw_values)
sleep(1)

4. Pressing the “Run” button should print the temperature, pressure, and the humidity
every second

(22.28, 1817.63, 0.8)
(22.27, 1817.66, ©.8)
(21.87, 1817.67, ©.8)
(21.83, 1017.73, ©.0)
(21.83, 1817.68, 0.8)
(21.81, 1817.68, ©.8)
(21.81, 1817.68, ©.8)

The altitude can be computed using the air pressure as explained in this document.

https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-BMP280#Pressure_and_altitude

Receiving radio data

The kit contains 2 Pico microcontrollers and 2 RFM69HCW modules to create a "Data
Emitter” (the CanSat) as well as the “Data Receiver” (the ground station).

In this section, we will setup the ground station (on the right below)

TX: Emitter (cansat)

'''''

.........

Raspberry Pico
rawdemo_tx.py

Optional: use Thonny / Putty / MPRemote to
see the messages sent by the Cansat

Send a message

o Tt
(acknowledgement)

RX: Receiver (on the ground)

RFM69HCW n

433Mhz

oooooo

H Wire a second

Raspberry Pico kg
rawdemo_rx.py micrecontroller
to transfert the
. radio messages

to a computer.

usB

Use Thonny / Putty / MPRemote to

see the received messages

A successful communication requires on both sides:

¢ Identical frequencies (eg: 433.1 MHz).

e |dentical encryption keys.

¢ Well-designed antennas, except during tests on breadboards where the 2
RFM69HCW are really close from each other.

Install the RFM69HCW python library

Using Thonny, follow the same process than with the installation of the BMP280 library to
upload the following rfm69.py file into the /lib folder of your 2 Pico.

https://raw.qgithubusercontent.com/mchobby/esp8266-upy/master/rfm69/lib/rfm69.py

https://raw.githubusercontent.com/mchobby/esp8266-upy/master/rfm69/lib/rfm69.py

Connecting the RFM69HCW using SPI

Using headers and jumper cables, we need to connect the ground station Pico and the

RFM69HCW together on a breadboard

The RFM69HCW documentation explains that we can connect to it using the SPI bus.
SPI requires us to connect 4 data cables, a reset connection plus 2 power cables and, thus

we need to connect seven cables in total.

| o

IPBY MOHLSUWLY

(]

B1O181815151518
RIQIRIRIRIRININ

61,62 G3 G4 GS =

]

® [k hUBEEY

shop.mchobby.be
RFMESHCW PICO
RST GP3
C5 GP5 (Slave Select)
MOSI GP7 (Miso)
MISO GP4 (Mosi)
SCK GP6 (Clock)
GND GND
VIN 3V3

*tflﬁ.

Note that since the 3V3 power pin is already used to power the BMP280, you can share it to
power the radio module like show in red below

2N iyl

B BB, £\
 d it

4
. .O.

- 3

T

Josuas;mssaad.
@8Zdu8 %@

~ ..

CANSAT
Waiting for radio data

1- Download and open the receiver script in Thonny

2- Update the frequency and the encryption key on lines 17 and 30
a. The frequency is defined on line 17, comprised between 430 and 440Mhz,

b. The encryption key can be defined on line 30 using the following code

rfm.encryption key = bytes([1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8])

Each team will receive its own frequency and encryption key before the rocket
launch.

3- Run the script

Shell

>

Freq : 433.1 h Waitiﬂg fﬂr thE
S Lo incoming messages!

Waiting for packets

https://raw.githubusercontent.com/mchobby/cansat-belgium-micropython/main/test-rfm69/test_receiver.py

Sending radio data

In this section, we will build the data emitter that will be onboard your CanSat.
Leave Thonny open with the receiver script running and open a second time Thonny.

Using headers and jumper cables, we need to connect the CanSat Pico and the
RFM69HCW together on another breadboard

On the second Pico:
1- Install MicroPython
2- Install the RFM69HCW python library if not already done (see previous section)
3- Connect the RFM69HCW using SPI (see previous section)

e e e

GGG

b wb b S b o ey e

3 (s (sl

< ll.‘-" . - |

A 878 3 & FITR

(
-3? 69 +9 £9 29"19

| L . . .
| . : 3 oy

et

4- Download and open the sender script in Thonny

5- Update the frequency and the encryption key on lines 18 and 32 to the same values
than the ground station

6- Upload the script to the Pico
7- Run the script

https://raw.githubusercontent.com/mchobby/cansat-belgium-micropython/main/test-rfm69/test_emitter.py

CANSAT

T Thonny - 1y Pi Pico : test_receiverpy @ 8:1 ~ O X | Th Thonny - Raspberry Pi Pico : ftest_emitterpy @ 23:1 - o x
File Edit View Run Tools Help File Edit View Run Tools Help
O (] o™ 0 (] o=
Files <untitled> [test_receiverpy | Files [test_emitterpy]
2“\5“"”9“(” = 1 """ CANSAT PICO RECEIVER node ‘(Fhl\scompu(ev = 1 """ CANSAT PICO Emitter node (CanSat)
2 2
#) SRecycle.Bin 3 Receives message requiring ACK over RFMG69HCW SPI module - RECEIVER nod 2\ SRecycle.8in 3 Emit message to the base station and wait for ACK (500ms max) over
R 4 Must be tested togheter with test_emitter Pl 4 RFMBOHCH SPI module - EMITTER node
). Documents and Settings 5 1) Documents and Settings 5 Must be tested togheter with test_receiver
. DRIVERS 6 See Tutorial : https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICQ 21 DRIVERS
2 drives by 7 See GitHub : https://github.com/mchobby/cansat-belgium-micropython/tre D drives See Tutorial : https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO
o etc 8 o ete See GitHub : https://github.com/mchobby/cansat-belgium-micropython/tre
f : = 9 RFMG9HCW breakout : https://shop.mchobby.be/product.php?id product=13% : =
3 lbr 16 RFMBIHCW breakout : https://www.adafruit.com/product/3071 1 lbr RFM69HCW breakout : https://shop.mchobby.be/product.php?id_product=139
1 OneDriveTemp R 1) OneDriveTemp RFMBOHCW breakout : https://www.adafruit.com/product/3671
) Perflogs 12 A Perflogs
1L Program Files 13 from machine import SPI, Pin 1 Pregram Files
4 Program Files («36) 14 from rfm6d import RFMGS 4 Program Files (:26) from machine import SPI, Pin
: ;:3::?3“ 15 import time : z:::::?m 15 from rfm69 import RFMG9
2 project 16 1 project 10 import time
) Recovery 17 FREQ =433.1 i Recovery 17
@ 1)) System Volume Infermation 18 ENCRYPTION_KEY = b"\x@1\x02\x03\x04\x85\x06\x07\x08\x01\x02\x03\x04\x0 1 System Volume Information 18 FREQ =433.1
) temp 19 NODE_ID = 100 # ID of this node » temp 19 ENCRYPTION_KEY = b™\x01\x02\x@3\x04\x05\x06\x07\x08\x01\x02\x03\x04\x@
B Users 20 A Users 20 NODE_ID =120 # ID of this
2 usr N - : - - 2 st . = :
2 WCHCN 21 spi = SPI(@, polarity=08, phase=0, firstbit=SPI.MSB) # 2 WCHCN 21 BASESTATION_ID = 160 to be conta
2 Windows 22 nss = Pin(5, Pin.OUT, value=True) 2 Windows 22
|] AMTAG.BIN 23 rst = Pin(3, Pin.OUT, value=False) [] AMTAG.BIN 23 spi = SPI(@, baudrate=50000, polarity=0, phase=0, firstbit=SPI.MSB)
__| bootTel.dat 24 _| bootTel.dat 24 nss = Pin(5, Pin.OUT, value=True)
1) consolelog = =) consolelog = = =
Raspbery Pi Pico il L Raspberry Pi Pico o
& lib Received (ASCII): Message 673! o lib Send message 670!
& test _receiverpy @) main.py e
Received (raw bytes): bytearray(b'Message €74!') temp.py Send message €71!
Received (BASCII): Message 674! & test_emitterpy +-> ACK received
Send nmessage 672!
Received (raw bytes): bytecarray(b'Message 675!') +-» ACK received
Recsived (ASCII): Messags 675! Send nmessage 673!
+-> ACK recesived
Received (raw bytes): bytearray(b'Message 676!') Send nessage €74!
Received (ASCII): Message 676! +-> ACK received
Send nmessage 675!
Received (raw bytes): bytsarray(b'Msssage 677!') +-> ACK received
Rsceived (ASCII): Message 677! Send messags 676!
+-> ACK received
Received (raw bytes): bytearray(b'Message 678!') Send nmessage 677!
Received (ASCII): Message 678! +-> ACK received
Send nmessage 678!
Received (raw bytes): bytsarray(b'Msssage 679!') +-> ACK received
Received (ASCII): Message €79! Send messags €79!
+-> ACK received
MicroPython (Raspberry Pi Pico) - COMT MicroPython (Raspberry Pi Pico) - COM4.

The 2 radio transmitting data to each other.
They must not be more than 5cm away from each other.

LU R
L)
LR I R Ty

More detailed information can be found on McHobby website

https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-RFM69HCW-TEST

~ .

&

CANSAT

Assembling your CanSat

When you have tested all your components, on the breadboards

The McHobby CanSat wiki provides all the necessary information to assemble the

components on the Cansat base and extension boards provided with the Kkit.

The assembly steps for the primary mission are the following:

1-

Solder a Pico to the CanSat base

IMPORTANT: in the kit we gave you Pico boards with pre-soldered header which you
can also use to solder on the CanSat base

Solder the PowerBoost 500 component to the CanSat base

Connect the BMP280 to the Qwiic/StemmaQt cable

Connect the TMP36 (optional)

Connect the radio module

The CanSat extension is useful if you need space to add more components for the
secondary mission, like GPS, accelerometer, camera etc

What to do next

Read the resource to design your parachute

Read the resource to design your radio antennas

Going further

Consider adding a GPS to increase your chances of finding your CanSat after the
launch.

o Tutorial

o GPS module

o MicroPython GPS library
Some teams design their own ground station real time dashboard

https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-BELGIUM
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-ASSEMBLY
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-ASSEMBLY#PowerBoost_500_Charger_Soldering
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-BMP280#Wiring_the_sensor
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-MISSION1-CAPTURE#Wire_the_temperature_sensor_2
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PICO-MISSION1-CAPTURE#Wire_the_radio_module_2
https://www.esero.lu/design-your-parachute/?lang=en
https://www.esero.lu/communicating-with-radio-ground-control-to-major-cansat/?lang=en
https://microcontrollerslab.com/neo-6m-gps-module-raspberry-pi-pico-micropython/
https://www.amazon.de/dp/B088LR3488/
https://github.com/inmcm/micropyGPS
https://github.com/leobotmanuel/CanSat-Ground-station

™~ Niga

CANSAT

Annexes

Learning Python
MicroPython is very similar to Python. If you are an absolute beginner in Python, here is a
list of useful resources to get you started:

https://wiki.python.org/moin/BeginnersGuide/NonProgrammers

For instance, LearnPython is a great interactive tutorial that is suitable for absolute
beginners.

12C Protocol

12C allows multiple devices (up to 1008) to be connected to the same I12C interface with just
2 wires. It also allows bi-directional communication over these two wires and so is ideal for
communicating with many sensors. An example wiring with three devices would be as
follows:

SDA [SDA g

L SCL SCL o

o I"D

c <,

= (=]

5 2
<L

S| SDA ~

(@]

S| scL =

<,

(=]

(1]

=

S| SDA ~

(@]

SCL =

<,

(=]

(1]

N

The software required to communicate with I12C devices can be complex, however most
devices will have a software library provided that will give you functions that make the device
easy to use. For example, we use the provided BMP280 library to hide away the low-level
12C code.

Typical 12C CanSat Uses:
"Smarter" sensors (e.g. the BMP280), Accelerometers, Analog-Digital Converters, Digital-
Analog Converters, LCD Screens, Battery Controllers

https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://www.learnpython.org/en/Hello%2C_World%21

~ -

CANSAT
Serial Peripheral Interface (SPI)
SPI offers an interface with more powerful capabilities than 12C at the cost of more wiring
required. As with 12C it also supports bi-directional communication with several devices but
offers a much higher data throughput. This makes it suitable for communicating with the
most complex devices that you might connect to the CanSat. The interface consists of at
least four pins:

SCLK: Serial Clock. A stream of 0-1s that the data is aligned to. The SPI clock rate is
related to the speed of this stream, you can slow this down if having data integrity issues.
MISO: Master Input / Slave Output. The data from the peripheral device to the Pi.

MOSI: Master Output / Slave Input. The data from the Pi to the peripheral device.
SSO/CEO: Slave Select / Chip Enable. Enables a peripheral device and means that the
device can output to the MISO pin. One SS/CE pin is needed for each peripheral device.

To use SPI you don't need to be too concerned about the function of these pins as the
device's software library will take care of most of the low-level SPI code for you. However, it
is good to be aware of their function when cascading multiple SPI devices together, for
example to connect two devices you will need two SS/CE pins:

SCLK SCLK 3
2 MIso € MISO §
) <,
< MOSI MOSI B
B g b----- - {-1-5] ss ©
=) >
ss1 [---
: SCLK
1
! MISO g
1 ~ | —
: > Mosl 3
Rt 1 =

Typical SPI CanSat Uses:
Cameras, Storage cards (e.g. SD cards), GPS modules, WiFi Modems

Universal Asynchronous Receiver-Transmitter (UART)

Despite the name UART is a relatively simple communication interface. It operates in the
same fashion as the GPIO with true/false values represented as 0V and 5V but pulses are
sent across the wire instead of a steady voltage pulses. This allows a numerical value to be
converted to a series of pulses and sent over a single wire:

. +5V
5" -> 0101 —>| Serial UART Y,
- +5V
3" -> 0011 ——>| Serial UART | |_, |_ oV

+5V
“0” -> 0000——> | Serial UART Y

The Raspberry Pi Pico has two UARTSs. These can be connected to many pairs of GP pins
as shown in purple in the pinout diagram below: TX is the transmit (i.e. data sent out of the
Pi) and RX as the receive (i.e. data sent to the Pi).

GP1 2 X N 35 IFEE
EE T L N 57
UART1 TX GP4 g X3 X 535
usriTx | G [ERNM @ "X 30
5 X SEEl Ground

Typical UART CanSat Uses:
Sending debug and development messages to a PC, communicating with GPS sensors,
communicating with external WiFi and GPRS (3G) modems.

https://pico.pinout.xyz/

